41 research outputs found

    Mobile Communication Networks and Digital Television Broadcasting Systems in the Same Frequency Bands – Advanced Co-Existence Scenarios

    Get PDF
    The increasing demand for wireless multimedia services provided by modern communication systems with stable services is a key feature of advanced markets. On the other hand, these systems can many times operate in a neighboring or in the same frequency bands. Therefore, numerous unwanted co-existence scenarios can occur. The aim of this paper is to summarize our results which were achieved during exploration and measurement of the co-existences between still used and upcoming mobile networks (from GSM to LTE) and digital terrestrial television broadcasting (DVB) systems. For all of these measurements and their evaluation universal measurement testbed has been proposed and used. Results presented in this paper are a significant part of our activities in work package WP5 in the ENIAC JU project “Agile RF Transceivers and Front-Ends for Future Smart Multi-Standard Communications Applications (ARTEMOS)”

    Testing QoE in Different 3D HDTV Technologies

    Get PDF
    The three dimensional (3D) display technology has started flooding the consumer television market. There is a number of different systems available with different marketing strategies and different advertised advantages. The main goal of the experiment described in this paper is to compare the systems in terms of achievable Quality of Experience (QoE) in different situations. The display systems considered are the liquid crystal display using polarized light and passive lightweight glasses for the separation of the left- and right-eye images, a plasma display with time multiplexed images and active shutter glasses and a projection system with time multiplexed images and active shutter glasses. As no standardized test methodology has been defined for testing of stereoscopic systems, we develop our own approach to testing different aspects of QoE on different systems without reference using semantic differential scales. We present an analysis of scores with respect to different phenomena under study and define which of the tested aspects can really express a difference in the performance of the considered display technologies

    Functionally dissociating ventro-dorsal components within the rostro-caudal hierarchical organization of the human prefrontal cortex

    Get PDF
    This work was supported by a grant of the BrainLinks-BrainTools Cluster of Excellence funded by the German Research Foundation (DFG, grant number EXC 1086).Peer reviewedPostprin

    Depth Map Improvement by Combining Passive and Active Scanning Methods

    Get PDF
    The paper presents a new method of more precise estimation of the depth map in 3D videos. The novelty of the proposed approach lies in sophisticated combination of partial results obtained by selected existing passive and active 3D scanning methods. The aim of the combination is to overcome drawbacks of individual methods and this way to improve the accessible precision of the final depth map. The active method used is incoherent profilometry scanning which fails on surface discontinuities. As a passive method, a stereo pair matching is used. This method is currently the most widely applied method of depth map estimation in the field of 3D capturing and is available in various implementations. Unfortunately, it fails if there is a lack of identifiable corresponding points in the scanned scene. The paper provides a specific way of combining these methods to improve the accuracy and usability. The proposed innovative technique exploits the advantages of both approaches. Specifically, the more accurate depth profiles of individual discontinuous objects obtained from the active method, and information about mean depths of the objects from the stereo pair are combined. Two implementations of the passive method have been tested for combination with active scanning: matching from stereo pair, and SIFT. The paper includes a brief description of the active and passive methods used and a thorough explanation of their combination. As an example, the proposed method is tested on a simple scene whose nature enables straight assessment of the achieved accuracy. The choice of a suitable implementation of the passive component is also shown and discussed. The obtained results of individual existing methods used and of the proposed combined method are given and compared. To demonstrate the contribution of the proposed combined method, also a comparison with the results obtained with a commercial solution is presented with significantly good results

    Detection of motor changes in huntington's disease using dynamic causal modeling

    Get PDF
    Deficits in motor functioning are one of the hallmarks of Huntington's disease (HD), a genetically caused neurodegenerative disorder. We applied functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM) to assess changes that occur with disease progression in the neural circuitry of key areas associated with executive and cognitive aspects of motor control. Seventy-seven healthy controls, 62 pre-symptomatic HD gene carriers (preHD), and 16 patients with manifest HD symptoms (earlyHD) performed a motor finger-tapping fMRI task with systematically varying speed and complexity. DCM was used to assess the causal interactions among seven pre-defined regions of interest, comprising primary motor cortex, supplementary motor area (SMA), dorsal premotor cortex, and superior parietal cortex. To capture heterogeneity among HD gene carriers, DCM parameters were entered into a hierarchical cluster analysis using Ward's method and squared Euclidian distance as a measure of similarity. After applying Bonferroni correction for the number of tests, DCM analysis revealed a group difference that was not present in the conventional fMRI analysis. We found an inhibitory effect of complexity on the connection from parietal to premotor areas in preHD, which became excitatory in earlyHD and correlated with putamen atrophy. While speed of finger movements did not modulate the connection from caudal to pre-SMA in controls and preHD, this connection became strongly negative in earlyHD. This second effect did not survive correction for multiple comparisons. Hierarchical clustering separated the gene mutation carriers into three clusters that also differed significantly between these two connections and thereby confirmed their relevance. DCM proved useful in identifying group differences that would have remained undetected by standard analyses and may aid in the investigation of between-subject heterogeneity

    Test-retest measurements of dopamine D1-type receptors using simultaneous PET-MRI imaging

    No full text
    Purpose The role of dopamine D1-type receptor (D1R)-expressing neurons in the regulation of motivated behavior and reward prediction has not yet been fully established. As a prerequisite for future research assessing D1-mediated neuronal network regulation using simultaneous PET/MRI and D1R-selective [11C]SCH23390, this study investigated the stability of central D1R measurements between two independent PET/MRI sessions under baseline conditions. Methods Thirteen healthy volunteers (7 female, age 33 ± 13 yrs) underwent 90-min emission scans, each after 90-s bolus injection of 486 ± 16 MBq [11C]SCH23390, on two separate days within 2–4 weeks using a PET/MRI system. Parametric images of D1R distribution volume ratio (DVR) and binding potential (BPND) were generated by a multi-linear reference tissue model with two parameters and the cerebellar cortex as receptor-free reference region. Volume-of-interest (VOI) analysis was performed with manual VOIs drawn on consecutive transverse MRI slices for brain regions with high and low D1R density. Results The DVR varied from 2.5 ± 0.3 to 2.9 ± 0.5 in regions with high D1R density (e.g. the head of the caudate) and from 1.2 ± 0.1 to 1.6 ± 0.2 in regions with low D1R density (e.g. the prefrontal cortex). The absolute variability of the DVR ranged from 2.4% ± 1.3% to 5.1% ± 5.3%, while Bland-Altman analyses revealed very low differences in mean DVR (e.g. 0.013 ± 0.17 for the nucleus accumbens). Intraclass correlation (one-way, random) indicated very high agreement (0.93 in average) for both DVR and BPND values. Accordingly, the absolute variability of BPND ranged from 7.0% ± 4.7% to 12.5% ± 10.6%; however, there were regions with very low D1R content, such as the occipital cortex, with higher mean variability. Conclusion The test–retest reliability of D1R measurements in this study was very high. This was the case not only for D1R-rich brain areas, but also for regions with low D1R density. These results will provide a solid base for future joint PET/MRI data analyses in stimulation-dependent mapping of D1R-containing neurons and their effects on projections in neuronal circuits that determine behavior
    corecore